International Conference on Power & Energy Systems: Towards Sustainable Energy - PESTSE - 14

Tutorial on

Computational Electromagnetics in Design and Analysis of Machines

Dr. Ravindra Bhide

GE Global Research,

GE India Technology Centre, Bangalore

Imagination at work.

GE Internal - For internal distribution only 13 March 2014

Outline

- 1. Introduction to GE Global Research, Bangalore
 - Electromagnetic system lab
- 2. Basic Electromagnetics
 - Magnetostatics & time-varying magnetic fields
- 3. Electromagnetic (EM) problems
 - Low frequency & high frequency problems
- 4. Basics of Finite Element Method (FEM)
 - Very simple and basic formulation
- 5. Case studies
 - Leakage Inductance of Transformer
 - Power loss in metallic plate
 - Torque computation in Induction motor

Imagination at work.

GE Global Research Electromagnetic Systems Lab

Other axial flux machines

- Global competition towards development of wind generator with higher-&-higher torque density
- Techniques, like FEM, enable for customized development of new topologies of generators with significant reduction in design-cycle

(ye

Basics of Electromagnetics

Basics of Electromagnetics

Ampere's Circuital Law The line integral of **H** about any closed path is the current enclosed by that path $\oint \mathbf{H} \cdot \mathbf{dL} = I \mathbf{A}$ Andre-Marie-Ampere Compute magnetic field intensity H У at Point-2? By Ampere Circuital Law $\oint \mathbf{H} \cdot d\mathbf{L} = \int_{0}^{2\pi} H_{\phi} \rho \, d\phi = H_{\phi} 2\pi\rho = I \quad \Longrightarrow \quad H_{\phi} = \frac{I}{2\pi\rho}$

Basics of Electromagnetics

Eddy current loss in Core

Skin Depth of CRGO at 50 Hz = 1-2 mm

Ravindra Bhide | 10 March 2014

Magnetic Vector Potential (MVP)

$$abla imes \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
Lenz's law of induction

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Ampere-Circuital law

No magnetic monopole exist

 $\nabla \cdot \mathbf{B} = 0$

Divergence of Curl of any vector = 0 $\nabla \cdot (\nabla \times \mathbf{F}) = 0$

• So, Magnetic Vector Potential, A $\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}) = 0 \Longrightarrow \mathbf{B} = \nabla \times \mathbf{A}$

$$\frac{1}{\mu} \nabla^2 \mathbf{A} = -\mathbf{J}_0 + \sigma \frac{\partial \mathbf{A}}{\partial t}$$
Spatial derivative Applied external current density Eddy current density

Ravindra Bhide | 10 March 2014

Why Magnetic Vector Potential (MVP) A?

All quantities can be computed using Magnetic Vector Potential formulation

- Magnetic flux density (**B** in Wb/m²)
- Magnetic field intensity (**H** in A/m)
- Magnetic forces and torque (F in N & T in N-m)
- Impedance (Z in Ω)
- Inductance (L in H)
- Eddy currents (I in A)
- Power loss (P in W/m)
- Flux linkage (λ in Wb)

Electromagnetic Problems

Transformers Motors Generators

Electromagnetic forming Induction heating

Circuit breakers

Plasma devices Nanotechnology Photonic crystals Magnetic storage technology

<u>Static</u>

Magnetostatics or electrostatic problem, e.g., DC excitation, electromagnet, computation of transformer leakage inductance

<u>Time-harmonic</u> Sinusoidal excitation problems, e.g., eddy current loss computation, induction heating, etc.

<u>Transient</u>

Time-varying excitation, e.g., in-rush currents, time-varying torque/force computation,

Electromagnetic Problems

Analytical Methods

- Separation of variables
- Method of Images
- Conformal mapping
- Schwartz-Christoffel Transformation

Not Suitable for

- Complex geometries
- Non-uniformities
- Material anisotropy
- Material non-linearity

Difference methods

- Simple to use
- Less computational intensive
- Can account for Material nonhomogeneity

Integral methods

- Mathematically more intensive
- Sparse matrix cannot be formed

Finite Element Method (FEM) in Electromagnetics

Finite Element Method (FEM) in Electromagnetics

Finite Element Software demos: Transformer and motor models

Live demo will be shown here, with problem solving of by FEM

Finite Element Method (FEM) in Electromagnetics

- Key factors about Meshing
- Element size?
 - Should be dense at field region
- Eddy current loss computation?
 - > At-least 3 elements in one skin depth in the eddy-loss region
- Force / Torque computation?
 - FEM package computes force/torque on the body which is completely surrounded by air
 - Air-gap is extremely crucial for meshing, minimum 4 air-gap layers for accurate torque computation

Static problem

- Applications of static excitation are
 - Permanent magnets
 - The steady flow of DC current.
 - An applied constant voltage
 - A moving conductor
 - An applied external field

Computation of transformer leakage inductance

Magnetic Energy

Leakage Inductance	Leakage Inductance
Model (%)	Experiment (%)
14.2%	14%

Magnetic governing equation $\frac{1}{\mu}\nabla^2 \mathbf{A} = -\mathbf{J}_0$ +Applied external Spatial Eddy current current density derivative density = 0 $[\mathbf{K}(\mathbf{A})]{\mathbf{A}} = {\mathbf{b}}$ Core

Ravindra Bhide | 10 March 2014

Leakage flux Plot

V — I — I TH

Time-harmonic problem

Computation of eddy current loss in metallic plate near current carrying bus-bar

Power loss (W)

$$P_{loss} = \bigoplus_{V} \rho J^2 dV$$
 where J is eddy current density $\mathbf{J} = j\omega\sigma \mathbf{A}$

Ravindra Bhide | 10 March 2014

Transient problem

Applications of Transient excitation are

- In-rush currents
- Transient torque/force
- Problem with motion (stator-rotor in electrical machines)
- Circuit-coupled problem

Magnetic governing equation $\frac{1}{\mu} \nabla^2 \mathbf{A} = -\mathbf{J}_0 + j\omega\sigma\mathbf{A}$ Spatial
derivativeApplied external
current densityEddy current
density = 0

Torque computation in 2.2 kW, 24 slots, 4 pole, 1500 rpm, Induction motor

Transient problem

- 2D FE non-linear transient analysis
 - Non-linear B-H curve
 - With motion
 - Circuit-coupled analysis

Comparison of computed and practical torques

Analytical value	FEM Package
14.3 Nm	14.13 Nm

